카테고리 없음
Polars type 변경
유키공
2025. 5. 26. 13:49
import polars as pl
def process_dataframe_optimized_pl(dict_df_types: dict, df: pl.DataFrame) -> pl.DataFrame:
def handle_column(col: str, dtype: str) -> pl.Expr:
try:
expr = pl.col(col)
if dtype == 'int':
return expr.cast(pl.Int32).fill_null(0).alias(col)
elif dtype == 'float':
return expr.cast(pl.Float32).fill_null(0).alias(col)
elif dtype == 'bool':
return expr.cast(pl.Utf8).str.to_lowercase().is_in(['true', 't', '1']).alias(col)
elif dtype == 'datetime':
return expr.cast(pl.Utf8).str.strptime(pl.Datetime, strict=False).alias(col)
elif dtype == 'string':
return expr.cast(pl.String).alias(col)
elif dtype == 'category':
return expr.cast(pl.Categorical).alias(col)
else:
return expr # return original if dtype not recognized
except Exception as e:
print(f"컬럼 '{col}' 처리 중 오류 발생: {e}")
return expr # return original on error
# Get intersection of DataFrame columns and dictionary keys
valid_cols = set(df.columns) & set(dict_df_types.keys())
# Filter for only valid types we want to process
valid_types = {'int', 'float', 'bool', 'datetime', 'string', 'category'}
# Create expressions for columns that need processing
exprs = [
handle_column(col, dict_df_types[col])
for col in valid_cols
if dict_df_types.get(col) in valid_types
]
return df.with_columns(exprs)