랭귀지/pandas
pandas groupby sum fillna astype
유키공
2024. 7. 13. 10:17
data = {
'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank'],
'Department': ['Sales', 'Sales', 'IT', 'IT', 'HR', 'HR'],
'Score': ['100', '200', '300', '400', '500', None]
}
df = pd.DataFrame(data)
# 데이터 타입을 int로 변환하고, None 값을 0으로 채우기
df['Score'] = df['Score'].astype(int).fillna(0)
grouped = df.groupby(['Department'])['Score'].sum().reset_index()
print(grouped)
Department Score
0 HR 1000
1 IT 1000
2 Sales 1000
sum column1개
import pandas as pd
data = {'A': ['a', 'b', 'c', 'a', 'b'],
'B': ['a', 'b', 'c', 'a', 'b'],
'C1': ['10', '20', '30', 'abc', '50']}
df = pd.DataFrame(data)
# 결측치 처리
df['C1'] = df['C1'].fillna(0).astype(int)
# groupby 수행
grouped = df.groupby(['A', 'B'])
result = grouped['C1'].sum().reset_index()
print(result)
sum column 복수
import pandas as pd
data = {'A': ['a', 'b', 'c', 'a', 'b'],
'B': ['a', 'b', 'c', 'a', 'b'],
'C1': ['10', '20', '30', 'abc', '50'],
'C2': [1, 2, 3, 'def', 5]}
df = pd.DataFrame(data)
# 결측치 처리
df['C1'] = df['C1'].fillna(0).astype(int)
df['C2'] = df['C2'].fillna(0).astype(int)
# groupby 수행
grouped = df.groupby(['A', 'B'])
result = grouped[['C1', 'C2']].sum().reset_index()
print(result)