일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
- 유니티
- MySQL
- 라즈베리파이
- swift
- 날짜
- pandas
- PyQt5
- sqlite
- node.js
- Unity
- IOS
- ASP
- 맛집
- 함수
- 리눅스
- PER
- mssql
- 다이어트
- Excel
- Linux
- PyQt
- flutter
- GIT
- tensorflow
- python
- MS-SQL
- ubuntu
- port
- urllib
- javascript
목록2024/08/29 (2)
아미(아름다운미소)
import pandas as pd# 데이터프레임 생성df1 = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})df2 = pd.DataFrame({'A': [5, 6], 'C': [7, 8]})# 세로 방향으로 결합 (outer join)result_outer = pd.concat([df1, df2], axis=0, join='outer', ignore_index=True)print("Outer Join:\n", result_outer)# 가로 방향으로 결합 (inner join)result_inner = pd.concat([df1, df2], axis=1, join='inner')print("\nInner Join:\n", result_inner)# 키를 사용하여 다중 인덱스 ..
import pandas as pd# 예시 데이터프레임 생성df1 = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})df2 = pd.DataFrame({'A': [5, 6], 'B': [7, 8]})df3 = pd.DataFrame({'A': [9, 10], 'C': [11, 12]}) # 컬럼명이 다름df4 = pd.DataFrame({'A': [13, 14], 'B': [15, 16]})df5 = pd.DataFrame({'A': [17, 18], 'B': [19, 20]})df6 = pd.DataFrame({'A': [21, 22], 'B': [23.0, 24.0]}) # 타입이 다름df7 = pd.DataFrame({'A': [25, 26], 'B': [27, 28]}..